On the spectral radius of graphs with connectivity at most k

J. Li • W. C. Shiu • W. H. Chan • A. Chang

Received: 8 May 2008 / Accepted: 2 September 2008 / Published online: 23 September 2008
© Springer Science+Business Media, LLC 2008

Abstract

In this paper, we study the spectral radius of graphs of order n with $\kappa(G) \leq$ k. We show that among those graphs, the maximal spectral radius is obtained uniquely at K_{n}^{k}, which is the graph obtained by joining k edges from k vertices of K_{n-1} to an isolated vertex. We also show that the spectral radius of K_{n}^{k} will be very close to $n-2$ for a fixed k and a sufficiently large n.

Keywords Energy levels • Spectral radius • Connectivity • Edge-connectivity

1 Introduction

In quantum chemistry, the skeletons of certain non-saturated hydrocarbons are represented by graphs. By Hückel molecular orbital (HMO) theory, energy levels of electrons in such a molecule are, in fact, the eigenvalues of the corresponding graph [15]. The stability of the molecule as well as other chemically relevant facts are closely connected with the graph eigenvalues (see [4,9] and [16, Chapters 5 and 6]). In particular, Lovász and Pelikán [14], and Cvetković and Gutman [5] proposed that the spectral radius of the molecular graph (of a saturated hydrocarbon) is used as a measure of branching of the underlying molecule. This direction of research was eventually further elaborated with emphasis on acyclic polyenes [6], alkanes [8], and benzenoid hydrocarbons [7,10]. To our best knowledge, the spectral radius of graphs

[^0]with $\kappa(G) \leq k$ was, so far, not considered in the chemical literature. On the other hand, graphs with $\kappa(G) \leq k$ represent important classes of molecules. Here we are concerned about graphs with $\kappa(G) \leq k$.

In order to describe our results, we need some graph-theoretic notation and terminology. Other undefined notations may be referred to [2].

Let $G=(V, E)$ be a simple undirected graph. For $v \in V(G)$, let $N_{G}(v)$ (or $N(v)$ for short) be the set of all neighbors of v in G and let $d(v)=|N(v)|$ be the degree of v. Let $e \notin E(G)$. We use $G+e$ to denote the graph obtained by adding e to G. For any set W of vertices (edges), $G-W$ and $G+W$ are the graphs obtained by deleting the vertices (edges) in W from G and adding the vertices (edges) in W to G, respectively. If G is connected and $G-W$ is disconnected, then we say that W is a w-vertex (-edge) cut of G where $w=|W|$. Other undefined notations may be referred to [2].

For $k \geq 1$, we say that a graph G is k-connected if either G is a complete graph K_{k+1}, or else it has at least $k+2$ vertices and contains no $(k-1)$-vertex cut. Similarly, for $k \geq 1$, a graph is a k-edge-connected if it has at least two vertices and does not contain $(k-1)$-edge cut. The maximal value of k for which a connected graph G is k-connected is the connectivity of G, denoted by $\kappa(G)$. If G is disconnected, we define $\kappa(G)=0$. The edge-connectivity $\kappa^{\prime}(G)$ is defined analogously. If G is a graph of order n, we may have the following remarks.
(1) $\kappa(G) \leq \kappa^{\prime}(G) \leq n-1$, and
$\kappa(G)=n-1, \kappa^{\prime}(G)=n-1$ and $G \cong K_{n}$ are equivalent.
We denote by \mathcal{V}_{n}^{k} the set of graphs of order n with $\kappa(G) \leq k \leq n-1$, and by \mathcal{E}_{n}^{k} the set of graphs of order n with $\kappa^{\prime}(G) \leq k \leq n-1$. The graph K_{n}^{k} is a graph obtained by joining k edges from k vertices of K_{n-1} to an isolated vertex as shown in Fig. 1. It is obvious that $K_{n}^{k} \in \mathcal{E}_{n}^{k} \subseteq \mathcal{V}_{n}^{k}$. The graph G_{n}^{k} is a graph obtained by joining k isolated vertices to one vertex of K_{n-k}, and $G_{n, k}$ is obtained by adding a path of length l or $l+1$ to each of the vertices of K_{n-k} for some positive integer l so that the order of $G_{n, k}$ is n.

Let $A(G)$ be the adjacency matrix of a graph G. The spectral radius, $\rho(G)$, of G is the largest eigenvalues of $A(G)$. For the results on the spectral radius of graphs, readers may refer to $[1,13,17]$ and the references therein. If G is connected, $A(G)$ is irreducible and by the Perron-Frobenius Theorem, the spectral radius is simple and has a unique positive eigenvector (i.e., all entries of the vector are positive). We will refer to such an eigenvector as the Perron vector of G.

In [3], Brualdi and Solheid proposed the following problem concerning spectral radius:

Fig. 1 The graph K_{n}^{k}

Springer

Given a set of graphs \mathfrak{I}, find an upper bound for the spectral radius of graphs in \mathfrak{F} and characterize the graphs in which the maximal spectral radius is attained.

Berman and Zhang [1] studied this question for graphs with n vertices and k cut vertices, and get the following result.

Theorem 1.1 Among all the connected graphs of order n containing k cut vertices, the maximal spectral radius is obtained uniquely at $G_{n, k}$.

Liu, Lu and Tian [13] studied the same question for graphs with n vertices and k cut edges, and get the following result.

Theorem 1.2 Among all the connected graphs of order n containing k cut edges, the maximal spectral radius is obtained uniquely at G_{n}^{k}.

In this paper, we investigate the problem for the graphs in $\mathfrak{J}=\mathcal{V}_{n}^{k}$, and in $\mathfrak{J}=\mathcal{E}_{n}^{k}$. We show that among all those graphs, the maximal spectral radius is obtained uniquely at K_{n}^{k}.

2 Main results

To obtain our main results, we will make use of the following lemmas.
Lemma 2.1 ([11]) If G is a graph of order n and size m with no isolated vertices,

$$
\rho(G) \leq \sqrt{2 m-n+1}
$$

with equality if and only if G is a star or the complete graph plus copies of K_{2}.
Lemma 2.2 ([17]) Let G be a connected graph with vertices set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $u, v \in V$. Suppose $v_{1}, v_{2}, \ldots, v_{s} \in N(v) \backslash N(u)(1 \leq s \leq d(v))$ and $[x]=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the Perron vector of $A(G)$, where x_{i} corresponds to the vertex v_{i}. Let G^{*} be the graph obtained by deleting from G the edges $v v_{i}(1 \leq i \leq s)$, and then adding to G the edges $u v_{i}(1 \leq i \leq s)$. If $x_{u} \geq x_{v}$. Then $\rho(G)<\rho\left(G^{*}\right)$.

Lemma $2.3([12,18])$ Let G be a connected graph, and G^{\prime} be a proper subgraph of G. Then $\rho\left(G^{\prime}\right)<\rho(G)$.

Corollary 2.4 Let G be a graph and let $G+e$ be the graph obtained from G by adding a new edge e into G. Then $\rho(G)<\rho(G+e)$.

In fact, suppose H is a subgraph of G. Then $\rho(H) \leq \rho(G)$.
Theorem 2.5 Among all the graphs in \mathcal{V}_{n}^{k}, the maximal spectral radius is obtained uniquely at K_{n}^{k}.

Proof We have to prove that for every $G \in \mathcal{V}_{n}^{k}$, then $\rho(G) \leq \rho\left(K_{n}^{k}\right)$, where the equality holds if and only if $G \cong K_{n}^{k}$. Since $K_{n}^{n-1}\left(\cong K_{n}\right)$ is the only graph in \mathcal{V}_{n}^{n-1}, the theorem holds when $k=n-1$. For $1 \leq k \leq n-2$, we let G^{*} with $V\left(G^{*}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the graph with the maximal spectral radius in \mathcal{V}_{n}^{k}; i.e. $\rho(G) \leq \rho\left(G^{*}\right)$ for all $G \in \mathcal{V}_{n}^{k}$.

Denote the Perron vector of $A\left(G^{*}\right)$ by $[x]=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where x_{i} corresponds to the vertex $v_{i}(i=1,2, \ldots, n)$. Since $G^{*} \in \mathcal{V}_{n}^{k}$ and G^{*} is not a complete graph, G^{*} has a k-vertex cut. Without loss of generality, we may let $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a k-vertex cut of G^{*}. In the following, we will prove three claims.

Claim 1 There are exactly two components of $G^{*}-V_{1}$.
Suppose contrary that $G^{*}-V_{1}$ contains three components G_{1}, G_{2} and G_{3}. Let $u \in G_{1}$ and $v \in G_{2}$. It is obvious that V_{1} is also a k-vertex cut of $G^{*}+u v$; i.e. $G^{*}+u v \in \mathcal{V}_{n}^{k}$. By Corollary 2.4, we have $\rho\left(G^{*}\right)<\rho\left(G^{*}+u v\right)$. This contradicts the definition of G^{*}.

Therefore, $G^{*}-V_{1}$ has exactly two components G_{1} and G_{2}.
Claim 2 Each subgraph of G^{*} induced by vertices $V\left(G_{i}\right) \cup V_{1}, i=1,2$, is a clique.
Suppose contrary that there is a pair of nonadjacent vertices $u, v \in V\left(G_{i}\right) \cup V_{1}$ for $i=1$ or 2 . Again, $G^{*}+u v \in \mathcal{V}_{n}^{k}$. By Corollary 2.4, we have $\rho\left(G^{*}\right)<\rho\left(G^{*}+u v\right)$. This contradicts the definition of G^{*}.

From Claim 2, it is clear that all G_{1} and G_{2} are cliques too. Then we write $K_{n_{i}}$ instead of G_{i}, for $i=1,2$, in the rest of the proof, where $n_{i}=\left|G_{i}\right|$.

Claim 3 Either $n_{1}=1$ or $n_{2}=1$.
Otherwise, we have $n_{1}>1$ and $n_{2}>1$. Let $u \in K_{n_{1}}$ and $w \in K_{n_{2}}$. Suppose

$$
N_{G^{*}}(u)=\left\{u_{1}, u_{2}, \ldots, u_{n_{1}-1}, v_{1}, v_{2}, \ldots, v_{k}\right\}
$$

and

$$
N_{G^{*}}(w)=\left\{w_{1}, w_{2}, \ldots, w_{n_{2}-1}, v_{1}, v_{2}, \ldots, v_{k}\right\}
$$

Let $G=G^{*}-\left\{w w_{1}, w w_{2}, \ldots, w w_{n_{2}-1}\right\}+\left\{u w_{1}, u w_{2}, \ldots, u w_{n_{2}-1}\right\}$ if $x_{u} \geq x_{w}$; otherwise, let $G=G^{*}-\left\{u u_{1}, u u_{2}, \ldots, u u_{n_{1}-1}\right\}+\left\{w u_{1}, w u_{2}, \ldots, w u_{n_{1}-1}\right\}$. In each of the above cases, $G \in \mathcal{V}_{n}^{k}$. By Lemma 2.2, $\rho\left(G^{*}\right)<\rho(G)$, which is a contradiction.

Hence $G^{*} \cong K_{n}^{k}$. This completes the proof.
When $k=1, \mathcal{V}_{n}^{1}$ is the set of all connected graphs of order n with a cut vertex. It is easy to get the following corollary.

Corollary 2.6 ([1]) Among all connected graphs of order n with a cut vertex, the maximal spectral radius is obtained uniquely at $K_{n}^{1} \cong G_{n, 1}$.

Since $K_{n}^{k} \in \mathcal{E}_{n}^{k} \subseteq \mathcal{V}_{n}^{k}$, the following corollary is obvious.
Corollary 2.7 Among all the graphs in \mathcal{E}_{n}^{k}, the maximal spectral radius is obtained uniquely at K_{n}^{k}.

When $k=1, \mathcal{E}_{n}^{1}$ is the set of all connected graphs of order n with a cut edge. It is easy to get the following corollary.

Corollary 2.8 ([13]) Among all connected graphs of order n with a cut edge, the maximal spectral radius is obtained uniquely at $K_{n}^{1} \cong G_{n}^{1}$.

Finally, we will illustrate some facts about $\rho\left(K_{n}^{k}\right)$:
Lemma 2.9 The spectral radius ρ of the graph K_{n}^{k} satisfies the equation

$$
\begin{equation*}
\rho^{3}-(n-3) \rho^{2}-(n+k-2) \rho+k(n-k-2)=0 \tag{2.1}
\end{equation*}
$$

Proof We assume that the vertex set of K_{n}^{k} is $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ (see Fig. 1), $\left\{v_{0}, v_{1}\right\}$, $\left\{v_{0}, v_{2}\right\}, \ldots,\left\{v_{0}, v_{k}\right\}$ are k edges adjacent to vertex v_{0} in K_{n}^{k}. Let $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ be the Perron vector of K_{n}^{k}, where x_{i} corresponds to the vertex $v_{i}(i=0,1, \ldots, n-1)$. By the symmetry of K_{n}^{k}, we have

$$
x_{1}=x_{2}=\cdots=x_{k} \quad \text { and } \quad x_{k+1}=x_{k+2}=\cdots=x_{n-1} .
$$

Setting $x_{0}=x, \quad x_{1}=y, \quad x_{n}=z$, we have

$$
\left\{\begin{array}{l}
\rho x=k y \\
\rho y=x+(k-1) y+(n-k-1) z \\
\rho z=k y+(n-k-2) z
\end{array}\right.
$$

Hence,

$$
z=\frac{[\rho-(k-1)] y-x}{n-k-1}=\frac{\rho-(k-1)-\frac{k}{\rho}}{n-k-1} y
$$

and

$$
z=\frac{k}{\rho-(n-k-2)} y .
$$

So

$$
\frac{\rho-(k-1)-\frac{k}{\rho}}{n-k-1}=\frac{k}{\rho-(n-k-2)}
$$

and the result follows from the above equation.
Corollary 2.10 Let ρ be the spectral radius of the graph K_{n}^{k}. Then,

$$
\rho\left(K_{n}^{k}\right)<n-2+\frac{k^{2}}{(n-2)^{2}-1} .
$$

Moreover, if k is fixed, then

$$
\lim _{n \rightarrow \infty}[\rho-(n-2)]=0 .
$$

Proof Since K_{n}^{k} contains a complete subgraph of order $n-1$, then $\rho>n-2$. Let $\rho=n-2+x$, where $x>0$, substituting into Eq. 2.1. Then x satisfies the following equation:

$$
x^{3}+[2(n-2)+1] x^{2}+\left[(n-2)^{2}+(n-2)-k\right] x-k^{2}=0 .
$$

Assume $x_{1} \geq x_{2} \geq x_{3}$ are their roots, then we have

$$
\begin{align*}
x_{1}+x_{2}+x_{3} & =-[2(n-2)+1], \tag{2.2}\\
x_{1} x_{2} x_{3} & =k^{2}, \tag{2.3}\\
x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} & =(n-2)^{2}+(n-2)-k \tag{2.4}
\end{align*}
$$

It is easy to see that $x_{1}>0, x_{2}<0, x_{3}<0$ from Eqs. 2.2 and 2.3. From Eq. 2.4, we have

$$
\begin{aligned}
x_{2} x_{3} & =(n-2)^{2}+(n-2)-k-x_{1}\left(x_{2}+x_{3}\right) \\
& >(n-2)^{2}+(n-2)-k \\
& \geq(n-2)^{2}-1 .
\end{aligned}
$$

Then $x_{1}=\frac{k^{2}}{x_{2} x_{3}}<\frac{k^{2}}{(n-2)^{2}-1}$. Hence $x<\frac{k^{2}}{(n-2)^{2}-1}$. The result holds.
Remark 1 By Lemma 2.1, we have an upper bound of $\rho\left(K_{n}^{k}\right)$ as follows,

$$
\begin{equation*}
\rho\left(K_{n}^{k}\right) \leq \sqrt{n(n-1)-2(n-1-k)-(n-1)}=\sqrt{(n-2)^{2}+2 k-1} . \tag{2.5}
\end{equation*}
$$

For comparing with the bound described in Corollary 2.10, we consider the following quantity:

$$
k^{4}+2(n-2)\left[(n-2)^{2}-1\right] k^{2}-2\left[(n-2)^{2}-1\right]^{2} k+\left[(n-2)^{2}-1\right]^{2}
$$

For convenience, we write $q=n-2$. Let

$$
f(k)=k^{4}+2 q\left(q^{2}-1\right) k^{2}-2\left(q^{2}-1\right)^{2} k+\left(q^{2}-1\right)^{2}, \text { for } q \geq 3
$$

We have

$$
\begin{aligned}
f(0) & =\left(q^{2}-1\right)^{2}>0 . \\
f(1) & =-q\left[\left(q^{2}-2\right)(q-2)-2\right]<0 . \\
f(q-2) & =-2 q\{q[(q-4)(q+3)+1]+21\}+21<0 . \\
f(q-1) & =4(q-1)^{2}>0 .
\end{aligned}
$$

Since $f^{\prime}(k)=4 k^{3}+4 q\left(q^{2}-1\right) k-2\left(q^{2}-1\right)^{2}$ and $f^{\prime \prime}(k)=12 k^{2}+4 q\left(q^{2}-1\right)>0$, $f(k)$ has only one minimum point. Thus $f(k)<0$ when $1 \leq k \leq n-4$.

So the bound described in Corollary 2.10 is better than that described in (2.5) when $1 \leq k \leq n-4$.

Acknowledgements Partially supported by GRF, Research Grant Council of Hong Kong; FRG, Hong Kong Baptist University; and the Natural National Science Foundation of China (No. 10431020).

References

1. A. Berman, X.D. Zhang, On the spectral radius of graphs with cut vertices. J. Combin. Theory Ser. B. 83, 233-240 (2001)
2. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications (MacMillan Ltd. Press, New York, 1976)
3. R.A. Brualdi, E.S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones. SIAM J. Algebra Discret. Method. 7, 265-272 (1986)
4. D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Theory and Application (Academic Press, New York, 1979)
5. D.M. Cvetković, I. Gutman, Note on branching. Croat. Chem. Acta. 49, 115-121 (1977)
6. I. Gutman, Acyclic conjugated molecules, trees and their energies. J. Math. Chem. 1, 123-143 (1987)
7. I. Gutman, L. Andjelković, Note on the structure-dependency of the largest graph eigenvalue of catacondensed benzenoid hydrocarbons. Coll. Sci. Papers Fac. Sci. Kraguje- vac. 13, 31-34 (1992)
8. I. Gutman, S. Marković, Benzenoid graphs with equal maximum eigenvalues. J. Math. Chem. 13, 213-215 (1993)
9. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)
10. I. Gutman, D. Vidović, Two early branching indices and the relation between them. Theor. Chem. Acc. 108, 98-102 (2002)
11. Y. Hong, A bound on the spectral radius of graphs. Linear Algebra Appl. 108, 135-139 (1988)
12. Q. Li, K.Q. Feng, On the largest eigenvalue of graphs. Acta Math. Appl. Sinica. 2, 167-175 (1979) (in Chinese).
13. H. Liu, M. Lu, F. Tian, On the spectral radius of graphs with cut edges. Linear Algebra Appl. 389, 139-145 (2004)
14. L. Lovász, J. Pelikán, On the eigenvalues of trees Period. Math. Hung. 3, 175-182 (1973)
15. M. Milun, N. Trinajstić, Hü ckel molecular orbital calculations of index od aromatic stabilization of polycyclic conjugated molecules. J. Org. Chem. 37, 139-141 (1972)
16. N. Trinajstić, Chemical Graph Theory (CRC Press, Boca Raton, 1992)
17. B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices. Linear Algebra Appl. 395, 343-349 (2005)
18. B. Zhou, N. Trinajstić, On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett. 447, 384-387 (2007)

[^0]: J. Li • W. C. Shiu ($\boxtimes) \cdot$ W. H. Chan

 Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China
 e-mail: wcshiu@hkbu.edu.hk
 A. Chang

 Software College/Center of Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China

