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Abstract In this paper, we study the spectral radius of graphs of order n with κ(G) ≤
k. We show that among those graphs, the maximal spectral radius is obtained uniquely
at K k

n , which is the graph obtained by joining k edges from k vertices of Kn−1 to an
isolated vertex. We also show that the spectral radius of K k

n will be very close to n − 2
for a fixed k and a sufficiently large n.
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1 Introduction

In quantum chemistry, the skeletons of certain non-saturated hydrocarbons are repre-
sented by graphs. By Hückel molecular orbital (HMO) theory, energy levels of elec-
trons in such a molecule are, in fact, the eigenvalues of the corresponding graph
[15]. The stability of the molecule as well as other chemically relevant facts are clo-
sely connected with the graph eigenvalues (see [4,9] and [16, Chapters 5 and 6]).
In particular, Lovász and Pelikán [14], and Cvetković and Gutman [5] proposed that
the spectral radius of the molecular graph (of a saturated hydrocarbon) is used as
a measure of branching of the underlying molecule. This direction of research was
eventually further elaborated with emphasis on acyclic polyenes [6], alkanes [8], and
benzenoid hydrocarbons [7,10]. To our best knowledge, the spectral radius of graphs
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with κ(G) ≤ k was, so far, not considered in the chemical literature. On the other
hand, graphs with κ(G) ≤ k represent important classes of molecules. Here we are
concerned about graphs with κ(G) ≤ k.

In order to describe our results, we need some graph-theoretic notation and termi-
nology. Other undefined notations may be referred to [2].

Let G = (V, E) be a simple undirected graph. For v ∈ V (G), let NG(v) (or N (v)

for short) be the set of all neighbors of v in G and let d(v) = |N (v)| be the degree
of v. Let e /∈ E(G). We use G + e to denote the graph obtained by adding e to G.
For any set W of vertices (edges), G − W and G + W are the graphs obtained by
deleting the vertices (edges) in W from G and adding the vertices (edges) in W to G,
respectively. If G is connected and G − W is disconnected, then we say that W is a
w-vertex (-edge) cut of G where w = |W |. Other undefined notations may be referred
to [2].

For k ≥ 1, we say that a graph G is k-connected if either G is a complete graph
Kk+1, or else it has at least k +2 vertices and contains no (k −1)-vertex cut. Similarly,
for k ≥ 1, a graph is a k-edge-connected if it has at least two vertices and does not
contain (k − 1)-edge cut. The maximal value of k for which a connected graph G
is k-connected is the connectivity of G, denoted by κ(G). If G is disconnected, we
define κ(G) = 0. The edge-connectivity κ ′(G) is defined analogously. If G is a graph
of order n, we may have the following remarks.

(1) κ(G) ≤ κ ′(G) ≤ n − 1, and
(2) κ(G) = n − 1, κ ′(G) = n − 1 and G ∼= Kn are equivalent.

We denote by Vk
n the set of graphs of order n with κ(G) ≤ k ≤ n −1, and by Ek

n the
set of graphs of order n with κ ′(G) ≤ k ≤ n −1. The graph K k

n is a graph obtained by
joining k edges from k vertices of Kn−1 to an isolated vertex as shown in Fig. 1. It is
obvious that K k

n ∈ Ek
n ⊆ Vk

n . The graph Gk
n is a graph obtained by joining k isolated

vertices to one vertex of Kn−k , and Gn,k is obtained by adding a path of length l or
l + 1 to each of the vertices of Kn−k for some positive integer l so that the order of
Gn,k is n.

Let A(G) be the adjacency matrix of a graph G. The spectral radius, ρ(G), of G
is the largest eigenvalues of A(G). For the results on the spectral radius of graphs,
readers may refer to [1,13,17] and the references therein. If G is connected, A(G) is
irreducible and by the Perron-Frobenius Theorem, the spectral radius is simple and
has a unique positive eigenvector (i.e., all entries of the vector are positive). We will
refer to such an eigenvector as the Perron vector of G.

In [3], Brualdi and Solheid proposed the following problem concerning spectral
radius:

Fig. 1 The graph K k
n

1nK -

kv

1v

123



342 J Math Chem (2009) 46:340–346

Given a set of graphs �, find an upper bound for the spectral radius of graphs in �
and characterize the graphs in which the maximal spectral radius is attained.

Berman and Zhang [1] studied this question for graphs with n vertices and k cut
vertices, and get the following result.

Theorem 1.1 Among all the connected graphs of order n containing k cut vertices,
the maximal spectral radius is obtained uniquely at Gn,k .

Liu, Lu and Tian [13] studied the same question for graphs with n vertices and k
cut edges, and get the following result.

Theorem 1.2 Among all the connected graphs of order n containing k cut edges, the
maximal spectral radius is obtained uniquely at Gk

n.

In this paper, we investigate the problem for the graphs in � = Vk
n , and in � = Ek

n .
We show that among all those graphs, the maximal spectral radius is obtained uniquely
at K k

n .

2 Main results

To obtain our main results, we will make use of the following lemmas.

Lemma 2.1 ([11]) If G is a graph of order n and size m with no isolated vertices,

ρ(G) ≤ √
2m − n + 1

with equality if and only if G is a star or the complete graph plus copies of K2.

Lemma 2.2 ([17]) Let G be a connected graph with vertices set V = {v1, v2, . . . , vn}.
Let u, v ∈ V . Suppose v1, v2, . . . , vs ∈ N (v)\ N (u) (1 ≤ s ≤ d(v)) and [x] =
(x1, x2, . . . , xn) is the Perron vector of A(G), where xi corresponds to the vertex vi .
Let G∗ be the graph obtained by deleting from G the edges vvi (1 ≤ i ≤ s), and then
adding to G the edges uvi (1 ≤ i ≤ s). If xu ≥ xv . Then ρ(G) < ρ(G∗).

Lemma 2.3 ([12,18]) Let G be a connected graph, and G ′ be a proper subgraph
of G. Then ρ(G ′) < ρ(G).

Corollary 2.4 Let G be a graph and let G+e be the graph obtained from G by adding
a new edge e into G. Then ρ(G) < ρ(G + e).

In fact, suppose H is a subgraph of G. Then ρ(H) ≤ ρ(G).

Theorem 2.5 Among all the graphs in Vk
n , the maximal spectral radius is obtained

uniquely at K k
n .

Proof We have to prove that for every G ∈ Vk
n , thenρ(G) ≤ ρ(K k

n ), where the equality
holds if and only if G ∼= K k

n . Since K n−1
n (∼= Kn) is the only graph in Vn−1

n , the theorem
holds when k = n−1. For 1 ≤ k ≤ n−2, we let G∗ with V (G∗) = {v1, v2, . . . , vn} be
the graph with the maximal spectral radius in Vk

n ; i.e. ρ(G) ≤ ρ(G∗) for all G ∈ Vk
n .
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Denote the Perron vector of A(G∗) by [x] = (x1, x2, . . . , xn), where xi corresponds
to the vertex vi (i = 1, 2, . . . , n). Since G∗ ∈ Vk

n and G∗ is not a complete graph, G∗
has a k-vertex cut. Without loss of generality, we may let V1 = {v1, v2, . . . , vk} be a
k-vertex cut of G∗. In the following, we will prove three claims.

Claim 1 There are exactly two components of G∗ − V1.

Suppose contrary that G∗ − V1 contains three components G1, G2 and G3. Let
u ∈ G1 and v ∈ G2. It is obvious that V1 is also a k-vertex cut of G∗ + uv; i.e.
G∗ + uv ∈ Vk

n . By Corollary 2.4, we have ρ(G∗) < ρ(G∗ + uv). This contradicts the
definition of G∗.

Therefore, G∗ − V1 has exactly two components G1 and G2.

Claim 2 Each subgraph of G∗ induced by vertices V (Gi ) ∪ V1, i = 1, 2, is a clique.

Suppose contrary that there is a pair of nonadjacent vertices u, v ∈ V (Gi )∪ V1 for
i = 1 or 2. Again, G∗ + uv ∈ Vk

n . By Corollary 2.4, we have ρ(G∗) < ρ(G∗ + uv).
This contradicts the definition of G∗.

From Claim 2, it is clear that all G1 and G2 are cliques too. Then we write Kni

instead of Gi , for i = 1, 2, in the rest of the proof, where ni = |Gi |.
Claim 3 Either n1 = 1 or n2 = 1.

Otherwise, we have n1 > 1 and n2 > 1. Let u ∈ Kn1 and w ∈ Kn2 . Suppose

NG∗(u) = {u1, u2, . . . , un1−1, v1, v2, . . . , vk}

and

NG∗(w) = {w1, w2, . . . , wn2−1, v1, v2, . . . , vk}.

Let G = G∗ − {ww1, ww2, . . . , wwn2−1} + {uw1, uw2, . . . , uwn2−1} if xu ≥ xw;
otherwise, let G = G∗ −{uu1, uu2, . . . , uun1−1}+{wu1, wu2, . . . , wun1−1}. In each
of the above cases, G ∈ Vk

n . By Lemma 2.2, ρ(G∗) < ρ(G), which is a contradiction.
Hence G∗ ∼= K k

n . This completes the proof. ��
When k = 1, V1

n is the set of all connected graphs of order n with a cut vertex. It
is easy to get the following corollary.

Corollary 2.6 ([1]) Among all connected graphs of order n with a cut vertex, the
maximal spectral radius is obtained uniquely at K 1

n
∼= Gn,1.

Since K k
n ∈ Ek

n ⊆ Vk
n , the following corollary is obvious.

Corollary 2.7 Among all the graphs in Ek
n , the maximal spectral radius is obtained

uniquely at K k
n .

When k = 1, E1
n is the set of all connected graphs of order n with a cut edge. It is

easy to get the following corollary.
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Corollary 2.8 ([13]) Among all connected graphs of order n with a cut edge, the
maximal spectral radius is obtained uniquely at K 1

n
∼= G1

n.

Finally, we will illustrate some facts about ρ(K k
n ):

Lemma 2.9 The spectral radius ρ of the graph K k
n satisfies the equation

ρ3 − (n − 3)ρ2 − (n + k − 2)ρ + k(n − k − 2) = 0. (2.1)

Proof We assume that the vertex set of K k
n is {v0, v1, . . . , vn−1} (see Fig. 1), {v0, v1},

{v0, v2}, . . ., {v0, vk} are k edges adjacent to vertex v0 in K k
n . Let (x0, x1, . . . , xn−1) be

the Perron vector of K k
n , where xi corresponds to the vertex vi (i = 0, 1, . . . , n − 1).

By the symmetry of K k
n , we have

x1 = x2 = · · · = xk and xk+1 = xk+2 = · · · = xn−1.

Setting x0 = x, x1 = y, xn = z, we have

⎧
⎨

⎩

ρx = ky,

ρy = x + (k − 1)y + (n − k − 1)z,
ρz = ky + (n − k − 2)z.

Hence,

z = [ρ − (k − 1)]y − x

n − k − 1
= ρ − (k − 1) − k

ρ

n − k − 1
y

and

z = k

ρ − (n − k − 2)
y.

So

ρ − (k − 1) − k
ρ

n − k − 1
= k

ρ − (n − k − 2)
,

and the result follows from the above equation. ��
Corollary 2.10 Let ρ be the spectral radius of the graph K k

n . Then,

ρ(K k
n ) < n − 2 + k2

(n − 2)2 − 1
.

Moreover, if k is fixed, then

lim
n→∞[ρ − (n − 2)] = 0.
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Proof Since K k
n contains a complete subgraph of order n − 1, then ρ > n − 2. Let

ρ = n − 2 + x , where x > 0, substituting into Eq. 2.1. Then x satisfies the following
equation:

x3 + [2(n − 2) + 1]x2 + [(n − 2)2 + (n − 2) − k]x − k2 = 0.

Assume x1 ≥ x2 ≥ x3 are their roots, then we have

x1 + x2 + x3 = −[2(n − 2) + 1], (2.2)

x1x2x3 = k2, (2.3)

x1x2 + x1x3 + x2x3 = (n − 2)2 + (n − 2) − k. (2.4)

It is easy to see that x1 > 0, x2 < 0, x3 < 0 from Eqs. 2.2 and 2.3. From Eq. 2.4,
we have

x2x3 = (n − 2)2 + (n − 2) − k − x1(x2 + x3)

> (n − 2)2 + (n − 2) − k

≥ (n − 2)2 − 1.

Then x1 = k2

x2x3
<

k2

(n − 2)2 − 1
. Hence x <

k2

(n − 2)2 − 1
. The result holds. ��

Remark 1 By Lemma 2.1, we have an upper bound of ρ(K k
n ) as follows,

ρ(K k
n ) ≤ √

n(n − 1) − 2(n − 1 − k) − (n − 1) =
√

(n − 2)2 + 2k − 1. (2.5)

For comparing with the bound described in Corollary 2.10, we consider the follo-
wing quantity:

k4 + 2(n − 2)[(n − 2)2 − 1]k2 − 2[(n − 2)2 − 1]2k + [(n − 2)2 − 1]2.

For convenience, we write q = n − 2. Let

f (k) = k4 + 2q(q2 − 1)k2 − 2(q2 − 1)2k + (q2 − 1)2, for q ≥ 3.

We have

f (0) = (q2 − 1)2 > 0.

f (1) = −q[(q2 − 2)(q − 2) − 2] < 0.

f (q − 2) = −2q
{
q[(q − 4)(q + 3) + 1] + 21

} + 21 < 0.

f (q − 1) = 4(q − 1)2 > 0.

Since f ′(k) = 4k3 + 4q(q2 − 1)k − 2(q2 − 1)2 and f ′′(k) = 12k2 + 4q(q2 − 1) > 0,
f (k) has only one minimum point. Thus f (k) < 0 when 1 ≤ k ≤ n − 4.
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So the bound described in Corollary 2.10 is better than that described in (2.5) when
1 ≤ k ≤ n − 4.
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