ORIGINAL PAPER

On the spectral radius of graphs with connectivity at most \boldsymbol{k}

J. Li · W. C. Shiu · W. H. Chan · A. Chang

Received: 8 May 2008 / Accepted: 2 September 2008 / Published online: 23 September 2008 © Springer Science+Business Media, LLC 2008

Abstract In this paper, we study the spectral radius of graphs of order *n* with $\kappa(G) \leq k$. We show that among those graphs, the maximal spectral radius is obtained uniquely at K_n^k , which is the graph obtained by joining *k* edges from *k* vertices of K_{n-1} to an isolated vertex. We also show that the spectral radius of K_n^k will be very close to n-2 for a fixed *k* and a sufficiently large *n*.

Keywords Energy levels · Spectral radius · Connectivity · Edge-connectivity

1 Introduction

In quantum chemistry, the skeletons of certain non-saturated hydrocarbons are represented by graphs. By Hückel molecular orbital (HMO) theory, energy levels of electrons in such a molecule are, in fact, the eigenvalues of the corresponding graph [15]. The stability of the molecule as well as other chemically relevant facts are closely connected with the graph eigenvalues (see [4,9] and [16, Chapters 5 and 6]). In particular, Lovász and Pelikán [14], and Cvetković and Gutman [5] proposed that the spectral radius of the molecular graph (of a saturated hydrocarbon) is used as a measure of branching of the underlying molecule. This direction of research was eventually further elaborated with emphasis on acyclic polyenes [6], alkanes [8], and benzenoid hydrocarbons [7, 10]. To our best knowledge, the spectral radius of graphs

J. Li · W. C. Shiu (🖂) · W. H. Chan

A. Chang

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China e-mail: wcshiu@hkbu.edu.hk

Software College/Center of Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, People's Republic of China

with $\kappa(G) \leq k$ was, so far, not considered in the chemical literature. On the other hand, graphs with $\kappa(G) \leq k$ represent important classes of molecules. Here we are concerned about graphs with $\kappa(G) \leq k$.

In order to describe our results, we need some graph-theoretic notation and terminology. Other undefined notations may be referred to [2].

Let G = (V, E) be a simple undirected graph. For $v \in V(G)$, let $N_G(v)$ (or N(v) for short) be the set of all neighbors of v in G and let d(v) = |N(v)| be the degree of v. Let $e \notin E(G)$. We use G + e to denote the graph obtained by adding e to G. For any set W of vertices (edges), G - W and G + W are the graphs obtained by deleting the vertices (edges) in W from G and adding the vertices (edges) in W to G, respectively. If G is connected and G - W is disconnected, then we say that W is a w-vertex (-edge) cut of G where w = |W|. Other undefined notations may be referred to [2].

For $k \ge 1$, we say that a graph *G* is *k*-connected if either *G* is a complete graph K_{k+1} , or else it has at least k + 2 vertices and contains no (k - 1)-vertex cut. Similarly, for $k \ge 1$, a graph is a *k*-edge-connected if it has at least two vertices and does not contain (k - 1)-edge cut. The maximal value of *k* for which a connected graph *G* is *k*-connected is the connectivity of *G*, denoted by $\kappa(G)$. If *G* is disconnected, we define $\kappa(G) = 0$. The edge-connectivity $\kappa'(G)$ is defined analogously. If *G* is a graph of order *n*, we may have the following remarks.

(1) $\kappa(G) \leq \kappa'(G) \leq n-1$, and

(2) $\kappa(G) = n - 1$, $\kappa'(G) = n - 1$ and $G \cong K_n$ are equivalent.

We denote by \mathcal{V}_n^k the set of graphs of order n with $\kappa(G) \le k \le n-1$, and by \mathcal{E}_n^k the set of graphs of order n with $\kappa'(G) \le k \le n-1$. The graph K_n^k is a graph obtained by joining k edges from k vertices of K_{n-1} to an isolated vertex as shown in Fig. 1. It is obvious that $K_n^k \in \mathcal{E}_n^k \subseteq \mathcal{V}_n^k$. The graph G_n^k is a graph obtained by joining k isolated vertices to one vertex of K_{n-k} , and $G_{n,k}$ is obtained by adding a path of length l or l+1 to each of the vertices of K_{n-k} for some positive integer l so that the order of $G_{n,k}$ is n.

Let A(G) be the adjacency matrix of a graph G. The spectral radius, $\rho(G)$, of G is the largest eigenvalues of A(G). For the results on the spectral radius of graphs, readers may refer to [1,13,17] and the references therein. If G is connected, A(G) is irreducible and by the Perron-Frobenius Theorem, the spectral radius is simple and has a unique positive eigenvector (i.e., all entries of the vector are positive). We will refer to such an eigenvector as the *Perron vector of G*.

In [3], Brualdi and Solheid proposed the following problem concerning spectral radius:

Fig. 1 The graph K_n^k

Given a set of graphs \Im , find an upper bound for the spectral radius of graphs in \Im and characterize the graphs in which the maximal spectral radius is attained.

Berman and Zhang [1] studied this question for graphs with n vertices and k cut vertices, and get the following result.

Theorem 1.1 Among all the connected graphs of order n containing k cut vertices, the maximal spectral radius is obtained uniquely at $G_{n,k}$.

Liu, Lu and Tian [13] studied the same question for graphs with n vertices and k cut edges, and get the following result.

Theorem 1.2 Among all the connected graphs of order n containing k cut edges, the maximal spectral radius is obtained uniquely at G_n^k .

In this paper, we investigate the problem for the graphs in $\mathfrak{I} = \mathcal{V}_n^k$, and in $\mathfrak{I} = \mathcal{E}_n^k$. We show that among all those graphs, the maximal spectral radius is obtained uniquely at K_n^k .

2 Main results

To obtain our main results, we will make use of the following lemmas.

Lemma 2.1 ([11]) If G is a graph of order n and size m with no isolated vertices,

$$\rho(G) \le \sqrt{2m - n + 1}$$

with equality if and only if G is a star or the complete graph plus copies of K_2 .

Lemma 2.2 ([17]) Let G be a connected graph with vertices set $V = \{v_1, v_2, ..., v_n\}$. Let $u, v \in V$. Suppose $v_1, v_2, ..., v_s \in N(v) \setminus N(u)$ $(1 \le s \le d(v))$ and $[x] = (x_1, x_2, ..., x_n)$ is the Perron vector of A(G), where x_i corresponds to the vertex v_i . Let G^* be the graph obtained by deleting from G the edges vv_i $(1 \le i \le s)$, and then adding to G the edges uv_i $(1 \le i \le s)$. If $x_u \ge x_v$. Then $\rho(G) < \rho(G^*)$.

Lemma 2.3 ([12,18]) Let G be a connected graph, and G' be a proper subgraph of G. Then $\rho(G') < \rho(G)$.

Corollary 2.4 Let G be a graph and let G + e be the graph obtained from G by adding a new edge e into G. Then $\rho(G) < \rho(G + e)$.

In fact, suppose *H* is a subgraph of *G*. Then $\rho(H) \leq \rho(G)$.

Theorem 2.5 Among all the graphs in \mathcal{V}_n^k , the maximal spectral radius is obtained uniquely at K_n^k .

Proof We have to prove that for every $G \in \mathcal{V}_n^k$, then $\rho(G) \leq \rho(K_n^k)$, where the equality holds if and only if $G \cong K_n^k$. Since $K_n^{n-1} \cong K_n$ is the only graph in \mathcal{V}_n^{n-1} , the theorem holds when k = n-1. For $1 \leq k \leq n-2$, we let G^* with $V(G^*) = \{v_1, v_2, \dots, v_n\}$ be the graph with the maximal spectral radius in \mathcal{V}_n^k ; i.e. $\rho(G) \leq \rho(G^*)$ for all $G \in \mathcal{V}_n^k$.

Denote the Perron vector of $A(G^*)$ by $[x] = (x_1, x_2, ..., x_n)$, where x_i corresponds to the vertex v_i (i = 1, 2, ..., n). Since $G^* \in \mathcal{V}_n^k$ and G^* is not a complete graph, G^* has a k-vertex cut. Without loss of generality, we may let $V_1 = \{v_1, v_2, \dots, v_k\}$ be a k-vertex cut of G^* . In the following, we will prove three claims.

Claim 1 There are exactly two components of $G^* - V_1$.

Suppose contrary that $G^* - V_1$ contains three components G_1 , G_2 and G_3 . Let $u \in G_1$ and $v \in G_2$. It is obvious that V_1 is also a k-vertex cut of $G^* + uv$; i.e. $G^* + uv \in \mathcal{V}_n^k$. By Corollary 2.4, we have $\rho(G^*) < \rho(G^* + uv)$. This contradicts the definition of G^* .

Therefore, $G^* - V_1$ has exactly two components G_1 and G_2 .

Claim 2 Each subgraph of G^* induced by vertices $V(G_i) \cup V_1$, i = 1, 2, is a clique.

Suppose contrary that there is a pair of nonadjacent vertices $u, v \in V(G_i) \cup V_1$ for i = 1 or 2. Again, $G^* + uv \in \mathcal{V}_n^k$. By Corollary 2.4, we have $\rho(G^*) < \rho(G^* + uv)$. This contradicts the definition of G^* .

From Claim 2, it is clear that all G_1 and G_2 are cliques too. Then we write K_{n_i} instead of G_i , for i = 1, 2, in the rest of the proof, where $n_i = |G_i|$.

Claim 3 *Either* $n_1 = 1$ *or* $n_2 = 1$.

Otherwise, we have $n_1 > 1$ and $n_2 > 1$. Let $u \in K_{n_1}$ and $w \in K_{n_2}$. Suppose

$$N_{G^*}(u) = \{u_1, u_2, \dots, u_{n_1-1}, v_1, v_2, \dots, v_k\}$$

and

$$N_{G^*}(w) = \{w_1, w_2, \dots, w_{n_2-1}, v_1, v_2, \dots, v_k\}.$$

Let $G = G^* - \{ww_1, ww_2, \dots, ww_{n_2-1}\} + \{uw_1, uw_2, \dots, uw_{n_2-1}\}$ if $x_u \ge x_w$; otherwise, let $G = G^* - \{uu_1, uu_2, \dots, uu_{n_1-1}\} + \{wu_1, wu_2, \dots, wu_{n_1-1}\}$. In each of the above cases, $G \in \mathcal{V}_n^k$. By Lemma 2.2, $\rho(G^*) < \rho(G)$, which is a contradiction.

Hence $G^* \cong K_n^k$. This completes the proof.

When k = 1, \mathcal{V}_n^1 is the set of all connected graphs of order *n* with a cut vertex. It is easy to get the following corollary.

Corollary 2.6 ([1]) Among all connected graphs of order n with a cut vertex, the maximal spectral radius is obtained uniquely at $K_n^1 \cong G_{n,1}$.

Since $K_n^k \in \mathcal{E}_n^k \subseteq \mathcal{V}_n^k$, the following corollary is obvious.

Corollary 2.7 Among all the graphs in \mathcal{E}_n^k , the maximal spectral radius is obtained uniquely at K_n^k .

When k = 1, \mathcal{E}_n^1 is the set of all connected graphs of order *n* with a cut edge. It is easy to get the following corollary.

Corollary 2.8 ([13]) Among all connected graphs of order n with a cut edge, the maximal spectral radius is obtained uniquely at $K_n^1 \cong G_n^1$.

Finally, we will illustrate some facts about $\rho(K_n^k)$:

Lemma 2.9 The spectral radius ρ of the graph K_n^k satisfies the equation

$$\rho^{3} - (n-3)\rho^{2} - (n+k-2)\rho + k(n-k-2) = 0.$$
(2.1)

Proof We assume that the vertex set of K_n^k is $\{v_0, v_1, \ldots, v_{n-1}\}$ (see Fig. 1), $\{v_0, v_1\}$, $\{v_0, v_2\}, \ldots, \{v_0, v_k\}$ are *k* edges adjacent to vertex v_0 in K_n^k . Let $(x_0, x_1, \ldots, x_{n-1})$ be the Perron vector of K_n^k , where x_i corresponds to the vertex v_i $(i = 0, 1, \ldots, n-1)$. By the symmetry of K_n^k , we have

$$x_1 = x_2 = \cdots = x_k$$
 and $x_{k+1} = x_{k+2} = \cdots = x_{n-1}$.

Setting $x_0 = x$, $x_1 = y$, $x_n = z$, we have

$$\begin{cases} \rho x = ky, \\ \rho y = x + (k-1)y + (n-k-1)z, \\ \rho z = ky + (n-k-2)z. \end{cases}$$

Hence,

$$z = \frac{[\rho - (k-1)]y - x}{n-k-1} = \frac{\rho - (k-1) - \frac{k}{\rho}}{n-k-1}y$$

and

$$z = \frac{k}{\rho - (n - k - 2)}y.$$

So

$$\frac{\rho - (k-1) - \frac{k}{\rho}}{n-k-1} = \frac{k}{\rho - (n-k-2)},$$

and the result follows from the above equation.

Corollary 2.10 Let ρ be the spectral radius of the graph K_n^k . Then,

$$\rho(K_n^k) < n - 2 + \frac{k^2}{(n-2)^2 - 1}.$$

Moreover, if k is fixed, then

$$\lim_{n \to \infty} [\rho - (n-2)] = 0.$$

Deringer

Proof Since K_n^k contains a complete subgraph of order n - 1, then $\rho > n - 2$. Let $\rho = n - 2 + x$, where x > 0, substituting into Eq. 2.1. Then x satisfies the following equation:

$$x^{3} + [2(n-2) + 1]x^{2} + [(n-2)^{2} + (n-2) - k]x - k^{2} = 0.$$

Assume $x_1 \ge x_2 \ge x_3$ are their roots, then we have

$$x_1 + x_2 + x_3 = -[2(n-2) + 1], (2.2)$$

$$x_1 x_2 x_3 = k^2, (2.3)$$

$$x_1x_2 + x_1x_3 + x_2x_3 = (n-2)^2 + (n-2) - k.$$
(2.4)

It is easy to see that $x_1 > 0$, $x_2 < 0$, $x_3 < 0$ from Eqs. 2.2 and 2.3. From Eq. 2.4, we have

$$x_2 x_3 = (n-2)^2 + (n-2) - k - x_1 (x_2 + x_3)$$

> $(n-2)^2 + (n-2) - k$
 $\ge (n-2)^2 - 1.$

Then $x_1 = \frac{k^2}{x_2 x_3} < \frac{k^2}{(n-2)^2 - 1}$. Hence $x < \frac{k^2}{(n-2)^2 - 1}$. The result holds. \Box

Remark 1 By Lemma 2.1, we have an upper bound of $\rho(K_n^k)$ as follows,

$$\rho(K_n^k) \le \sqrt{n(n-1) - 2(n-1-k) - (n-1)} = \sqrt{(n-2)^2 + 2k - 1}.$$
 (2.5)

For comparing with the bound described in Corollary 2.10, we consider the following quantity:

$$k^{4} + 2(n-2)[(n-2)^{2} - 1]k^{2} - 2[(n-2)^{2} - 1]^{2}k + [(n-2)^{2} - 1]^{2}.$$

For convenience, we write q = n - 2. Let

$$f(k) = k^4 + 2q(q^2 - 1)k^2 - 2(q^2 - 1)^2k + (q^2 - 1)^2$$
, for $q \ge 3$.

We have

$$f(0) = (q^{2} - 1)^{2} > 0.$$

$$f(1) = -q[(q^{2} - 2)(q - 2) - 2] < 0.$$

$$f(q - 2) = -2q\{q[(q - 4)(q + 3) + 1] + 21\} + 21 < 0$$

$$f(q - 1) = 4(q - 1)^{2} > 0.$$

Since $f'(k) = 4k^3 + 4q(q^2 - 1)k - 2(q^2 - 1)^2$ and $f''(k) = 12k^2 + 4q(q^2 - 1) > 0$, f(k) has only one minimum point. Thus f(k) < 0 when $1 \le k \le n - 4$.

Deringer

So the bound described in Corollary 2.10 is better than that described in (2.5) when $1 \le k \le n - 4$.

Acknowledgements Partially supported by GRF, Research Grant Council of Hong Kong; FRG, Hong Kong Baptist University; and the Natural National Science Foundation of China (No. 10431020).

References

- A. Berman, X.D. Zhang, On the spectral radius of graphs with cut vertices. J. Combin. Theory Ser. B. 83, 233–240 (2001)
- 2. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications (MacMillan Ltd. Press, New York, 1976)
- R.A. Brualdi, E.S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones. SIAM J. Algebra Discret. Method. 7, 265–272 (1986)
- D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Theory and Application (Academic Press, New York, 1979)
- 5. D.M. Cvetković, I. Gutman, Note on branching. Croat. Chem. Acta. 49, 115-121 (1977)
- 6. I. Gutman, Acyclic conjugated molecules, trees and their energies. J. Math. Chem. 1, 123–143 (1987)
- I. Gutman, L. Andjelković, Note on the structure-dependency of the largest graph eigenvalue of catacondensed benzenoid hydrocarbons. Coll. Sci. Papers Fac. Sci. Kraguje- vac. 13, 31–34 (1992)
- I. Gutman, S. Marković, Benzenoid graphs with equal maximum eigenvalues. J. Math. Chem. 13, 213–215 (1993)
- 9. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986)
- I. Gutman, D. Vidović, Two early branching indices and the relation between them. Theor. Chem. Acc. 108, 98–102 (2002)
- 11. Y. Hong, A bound on the spectral radius of graphs. Linear Algebra Appl. 108, 135–139 (1988)
- 12. Q. Li, K.Q. Feng, On the largest eigenvalue of graphs. Acta Math. Appl. Sinica. 2, 167–175 (1979) (in Chinese).
- H. Liu, M. Lu, F. Tian, On the spectral radius of graphs with cut edges. Linear Algebra Appl. 389, 139–145 (2004)
- 14. L. Lovász, J. Pelikán, On the eigenvalues of trees Period. Math. Hung. 3, 175–182 (1973)
- M. Milun, N. Trinajstić, Hü ckel molecular orbital calculations of index od aromatic stabilization of polycyclic conjugated molecules. J. Org. Chem. 37, 139–141 (1972)
- 16. N. Trinajstić, Chemical Graph Theory (CRC Press, Boca Raton, 1992)
- B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on k pendant vertices. Linear Algebra Appl. 395, 343–349 (2005)
- B. Zhou, N. Trinajstić, On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett. 447, 384–387 (2007)